

v

Contents in a Glance

 Preface xiii

Chapter 1 Introduction to Computers and Programming 1

Chapter 2 Input, Processing, and Output 31

Chapter 3 Decision Structures and Boolean Logic 119

Chapter 4 Repetition Structures 169

Chapter 5 Functions 219

Chapter 6 Files and Exceptions 303

Chapter 7 Lists and Tuples 361

Chapter 8 More About Strings 431

Chapter 9 Dictionaries and Sets 467

Chapter 10 Classes and Object-Oriented Programming 521

Chapter 11 Inheritance 583

Chapter 12 Recursion 609

Chapter 13 GUI Programming 629

Chapter 14 Database Programming 717

Appendix A Installing Python 799

Appendix B Introduction to IDLE 803

Appendix C The ASCII Character Set 811

Appendix D Predefined Named Colors 813

Appendix E More About the import Statement 819

Appendix F Formatting Numeric Output with the format() Function 823

Appendix G Installing Modules with the pip Utility 829

Appendix H Answers to Checkpoints 831

 Index 853

 Credits 869

A01_GADD9032_05_SE_FM.indd 5 11/12/19 2:31 PM

vii

Contents

Preface xiii

Chapter 1 Introduction to Computers and Programming 1
1.1 Introduction 1
1.2 Hardware and Software 2
1.3 How Computers Store Data 7
1.4 How a Program Works 12
1.5 Using Python 20
 Review Questions 24

Chapter 2 Input, Processing, and Output 31
2.1 Designing a Program 31
2.2 Input, Processing, and Output 35
2.3 Displaying Output with the print Function 36
2.4 Comments 39
2.5 Variables 40
2.6 Reading Input from the Keyboard 49
2.7 Performing Calculations 53
2.8 String Concatenation 65
2.9 More About the print Function 67
2.10 Displaying Formatted Output with F-strings 70
2.11 Named Constants 80
2.12 Introduction to Turtle Graphics 81
 Review Questions 109
 Programming Exercises 114

Chapter 3 Decision Structures and Boolean Logic 119
3.1 The if Statement 119
3.2 The if-else Statement 128
3.3 Comparing Strings 131
3.4 Nested Decision Structures and the if-elif-else Statement 135
3.5 Logical Operators 143
3.6 Boolean Variables 149
3.7 Turtle Graphics: Determining the State of the Turtle 150
 Review Questions 158
 Programming Exercises 161

A01_GADD9032_05_SE_FM.indd 7 11/12/19 2:31 PM

viii Contents

Chapter 4 Repetition Structures 169
4.1 Introduction to Repetition Structures 169
4.2 The while Loop: A Condition-Controlled Loop 170
4.3 The for Loop: A Count-Controlled Loop 178
4.4 Calculating a Running Total 189
4.5 Sentinels 192
4.6 Input Validation Loops 195
4.7 Nested Loops 200
4.8 Turtle Graphics: Using Loops to Draw Designs 207
 Review Questions 211
 Programming Exercises 213

Chapter 5 Functions 219
5.1 Introduction to Functions 219
5.2 Defining and Calling a Void Function 222
5.3 Designing a Program to Use Functions 227
5.4 Local Variables 233
5.5 Passing Arguments to Functions 236
5.6 Global Variables and Global Constants 246
5.7 Introduction to Value-Returning Functions:

Generating Random Numbers 250
5.8 Writing Your Own Value-Returning Functions 261
5.9 The math Module 274
5.10 Storing Functions in Modules 277
5.11 Turtle Graphics: Modularizing Code with Functions 283
 Review Questions 289
 Programming Exercises 294

Chapter 6 Files and Exceptions 303
6.1 Introduction to File Input and Output 303
6.2 Using Loops to Process Files 321
6.3 Processing Records 328
6.4 Exceptions 341
 Review Questions 354
 Programming Exercises 358

Chapter 7 Lists and Tuples 361
7.1 Sequences 361
7.2 Introduction to Lists 361
7.3 List Slicing 370
7.4 Finding Items in Lists with the in Operator 373
7.5 List Methods and Useful Built-in Functions 375
7.6 Copying Lists 382
7.7 Processing Lists 383
7.8 List Comprehensions 397
7.9 Two-Dimensional Lists 399
7.10 Tuples 404
7.11 Plotting List Data with the matplotlib Package 406
 Review Questions 423
 Programming Exercises 426

A01_GADD9032_05_SE_FM.indd 8 11/12/19 2:31 PM

 Contents ix

Chapter 8 More About Strings 431
8.1 Basic String Operations 431
8.2 String Slicing 439
8.3 Testing, Searching, and Manipulating Strings 443
 Review Questions 459
 Programming Exercises 462

Chapter 9 Dictionaries and Sets 467
9.1 Dictionaries 467
9.2 Sets 493
9.3 Serializing Objects 506
 Review Questions 512
 Programming Exercises 517

Chapter 10 Classes and Object-Oriented Programming 521
10.1 Procedural and Object-Oriented Programming 521
10.2 Classes 525
10.3 Working with Instances 542
10.4 Techniques for Designing Classe 564
 Review Questions 575
 Programming Exercises 578

Chapter 11 Inheritance 583
11.1 Introduction to Inheritance 583
11.2 Polymorphism 598
 Review Questions 604
 Programming Exercises 606

Chapter 12 Recursion 609
12.1 Introduction to Recursion 609
12.2 Problem Solving with Recursion 612
12.3 Examples of Recursive Algorithms 616
 Review Questions 624
 Programming Exercises 626

Chapter 13 GUI Programming 629
13.1 Graphical User Interfaces 629
13.2 Using the tkinter Module 631
13.3 Displaying Text with Label Widgets 635
13.4 Organizing Widgets with Frames 645
13.5 Button Widgets and Info Dialog Boxes 647
13.6 Getting Input with the Entry Widget 651
13.7 Using Labels as Output Fields 654
13.8 Radio Buttons and Check Buttons 661
13.9 Listbox Widgets 668
13.10 Drawing Shapes with the Canvas Widget 687
 Review Questions 710
 Programming Exercises 713

A01_GADD9032_05_SE_FM.indd 9 11/12/19 2:31 PM

x Contents

Chapter 14 Database Programming 717
14.1 Database Management Systems 717
14.2 Tables, Rows, and Columns 719
14.3 Opening and Closing a Database Connection with SQLite 723
14.4 Creating and Deleting Tables 726
14.5 Adding Data to a Table 731
14.6 Querying Data With the SQL SELECT Statement 738
14.7 Updating and Deleting Existing Rows 753
14.8 More About Primary Keys 760
14.9 Handling Database Exceptions 763
14.10 CRUD Operations 766
14.11 Relational Data 774
 Review Questions 790
 Programming Exercises 796

Appendix A Installing Python 799

Appendix B Introduction to IDLE 803

Appendix C The ASCII Character Set 811

Appendix D Predefined Named Colors 813

Appendix E More About the import Statement 819

Appendix F Formatting Numeric Output with the format() Function 823

Appendix G Installing Modules with the pip Utility 829

Appendix H Answers to Checkpoints 831

 Index 853

 Credits 869

A01_GADD9032_05_SE_FM.indd 10 11/12/19 2:31 PM

 LOCATION OF VIDEONOTES IN THE TEXT

Chapter 1 Using Interactive Mode in IDLE, p. 23
 Performing Exercise 2, p. 28

Chapter 2 The print Function, p. 36
 Reading Input from the Keyboard, p. 49
 Introduction to Turtle Graphics, p. 81

 The Sales Prediction Problem, p. 114

Chapter 3 The if Statement, p. 119
 The if-else Statement, p. 128
 The Areas of Rectangles Problem, p. 161

Chapter 4 The while Loop, p. 170
 The for Loop, p. 178
 The Bug Collector Problem, p. 213

Chapter 5 Defining and Calling a Function, p. 222
 Passing Arguments to a Function, p. 236
 Writing a Value-Returning Function, p. 261
 The Kilometer Converter Problem, p. 294
 The Feet to Inches Problem, p. 296

Chapter 6 Using Loops to Process Files, p. 321
 File Display, p. 358

Chapter 7 List Slicing, p. 370
 The Lottery Number Generator Problem, p. 426

Chapter 8 The Vowels and Consonants problem, p. 463

Chapter 9 Introduction to Dictionaries, p. 467
 Introduction to Sets, p. 493
 The Capital Quiz Problem, p. 518

Chapter 10 Classes and Objects, p. 525
 The Pet class, p. 578

Chapter 11 The Person and Customer Classes, p. 607

Chapter 12 The Recursive Multiplication Problem, p. 626

Chapter 13 Creating a Simple GUI application, p. 635
 Responding to Button Clicks, p. 647
 The Name and Address Problem, p. 713

Chapter 14 Opening and Closing a Database Connection, p. 723
 Creating a Table, p. 726
 Adding Data to a Table, p. 731
 The SELECT Statement, p. 739
 Updating Rows, p. 753
 Getting Started with the Population Database Problem, p. 796

Appendix B Introduction to IDLE, p. 803

A01_GADD9032_05_SE_FM.indd 11 11/12/19 2:31 PM

xiii

Welcome to Starting Out with Python, Fifth Edition. This book uses the Python language
to teach programming concepts and problem-solving skills, without assuming any previous
programming experience. With easy-to-understand examples, pseudocode, flowcharts, and
other tools, the student learns how to design the logic of programs then implement those
programs using Python. This book is ideal for an introductory programming course or a
programming logic and design course using Python as the language.

As with all the books in the Starting Out With series, the hallmark of this text is its clear,
friendly, and easy-to-understand writing. In addition, it is rich in example programs that
are concise and practical. The programs in this book include short examples that highlight
specific programming topics, as well as more involved examples that focus on problem solv-
ing. Each chapter provides one or more case studies that provide step-by-step analysis of a
specific problem and shows the student how to solve it.

Control Structures First, Then Classes
Python is a fully object-oriented programming language, but students do not have to under-
stand object-oriented concepts to start programming in Python. This text first introduces the
student to the fundamentals of data storage, input and output, control structures, functions,
sequences and lists, file I/O, and objects that are created from standard library classes. Then
the student learns to write classes, explores the topics of inheritance and polymorphism, and
learns to write recursive functions. Finally, the student learns to develop simple event-driven
GUI applications.

Changes in the Fifth Edition
This book’s clear writing style remains the same as in the previous edition. However, many
additions and improvements have been made, which are summarized here:

● Database Programming – This edition adds a new chapter on database programming.
Chapter 14 introduces the student to SQL and Python database programming with
SQLite.

● Comprehension Expressions – This edition introduces and explains list comprehen-
sions, dictionary comprehensions, and set comprehensions.

Preface

A01_GADD9032_05_SE_FM.indd 13 11/12/19 2:31 PM

xiv Preface

● Updated String Topics – Several new string topics have been added, including:
o Throughout the text, this edition uses f-strings, which were introduced in Python

3.6, to display formatted output. F-strings use a concise and intuitive syntax and
are easier to learn than the format function. The previous material on the format
function has been moved to Appendix F.

o A new discussion of string tokens has been added to Chapter 8.
o A new example of reading and parsing CSV files has been added to Chapter 8.
o The discussion of string concatenation in Chapter 2 has been expanded to include

implicit concatenation of adjacent strings.

● GUI Programming – Several new GUI programming topics have been added to
Chapter 13, including:
o Adding borders to widgets
o Internal and external padding
o Listbox widgets and scrollbars

● Turtle Graphics: Two commands for reading user input with dialog boxes have been
introduced:
o turtle.numinput
o turtle.textinput

● Random List Element Selection – The random.choice() function is introduced in
Chapter 7 as a way to randomly select list elements.

● New Function Topics – Several new topics have been added to chapter 5, including:
o The pass keyword is introduced
o Expanded discussion of the value None, and why a function might return None.
o This edition adopts the standard practice of conditionally executing the main function.

Brief Overview of Each Chapter

Chapter 1: Introduction to Computers and Programming

This chapter begins by giving a very concrete and easy-to-understand explanation of how
computers work, how data is stored and manipulated, and why we write programs in high-
level languages. An introduction to Python, interactive mode, script mode, and the IDLE
environment are also given.

Chapter 2: Input, Processing, and Output

This chapter introduces the program development cycle, variables, data types, and simple
programs that are written as sequence structures. The student learns to write simple programs
that read input from the keyboard, perform mathematical operations, and produce formatted
screen output. Pseudocode and flowcharts are also introduced as tools for designing programs.
The chapter also includes an optional introduction to the turtle graphics library.

Chapter 3: Decision Structures and Boolean Logic

In this chapter, the student learns about relational operators and Boolean expressions and is
shown how to control the flow of a program with decision structures. The if, if-else, and

A01_GADD9032_05_SE_FM.indd 14 17/12/19 5:45 PM

 Preface xv

if-elif-else statements are covered. Nested decision structures and logical operators are
discussed as well. The chapter also includes an optional turtle graphics section, with a discus-
sion of how to use decision structures to test the state of the turtle.

Chapter 4: Repetition Structures

This chapter shows the student how to create repetition structures using the while loop and
for loop. Counters, accumulators, running totals, and sentinels are discussed, as well as
techniques for writing input validation loops. The chapter also includes an optional section
on using loops to draw designs with the turtle graphics library.

Chapter 5: Functions

In this chapter, the student first learns how to write and call void functions. The chapter
shows the benefits of using functions to modularize programs and discusses the top-down
design approach. Then, the student learns to pass arguments to functions. Common library
functions, such as those for generating random numbers, are discussed. After learning how
to call library functions and use their return value, the student learns to define and call his
or her own functions. Then the student learns how to use modules to organize functions. An
optional section includes a discussion of modularizing turtle graphics code with functions.

Chapter 6: Files and Exceptions

This chapter introduces sequential file input and output. The student learns to read and write
large sets of data and store data as fields and records. The chapter concludes by discussing
exceptions and shows the student how to write exception-handling code.

Chapter 7: Lists and Tuples

This chapter introduces the student to the concept of a sequence in Python and explores the
use of two common Python sequences: lists and tuples. The student learns to use lists for
arraylike operations, such as storing objects in a list, iterating over a list, searching for
items in a list, and calculating the sum and average of items in a list. The chapter discusses
list comprehension expressions, slicing, and many of the list methods. One- and two-
dimensional lists are covered. The chapter also includes a discussion of the matplotlib
package, and how to use it to plot charts and graphs from lists.

Chapter 8: More About Strings

In this chapter, the student learns to process strings at a detailed level. String slicing and
 algorithms that step through the individual characters in a string are discussed, and several
built-in functions and string methods for character and text processing are introduced. This
chapter also includes examples of string tokenizing and parsing CSV files.

Chapter 9: Dictionaries and Sets

This chapter introduces the dictionary and set data structures. The student learns to store
data as key-value pairs in dictionaries, search for values, change existing values, add new

A01_GADD9032_05_SE_FM.indd 15 11/12/19 2:31 PM

xvi Preface

key-value pairs, delete key-value pairs, and write dictionary comprehensions. The student
learns to store values as unique elements in sets and perform common set operations such
as union, intersection, difference, and symmetric difference. Set comprehensions are also
introduced. The chapter concludes with a discussion of object serialization and introduces
the student to the Python pickle module.

Chapter 10: Classes and Object-Oriented Programming

This chapter compares procedural and object-oriented programming practices. It covers the
fundamental concepts of classes and objects. Attributes, methods, encapsulation and data
hiding, _ _init_ _ functions (which are similar to constructors), accessors, and mutators are
discussed. The student learns how to model classes with UML and how to find the classes
in a particular problem.

Chapter 11: Inheritance

The study of classes continues in this chapter with the subjects of inheritance and polymor-
phism. The topics covered include superclasses, subclasses, how _ _init_ _ functions work in
inheritance, method overriding, and polymorphism.

Chapter 12: Recursion

This chapter discusses recursion and its use in problem solving. A visual trace of recursive calls
is provided, and recursive applications are discussed. Recursive algorithms for many tasks are
presented, such as finding factorials, finding a greatest common denominator (GCD), and sum-
ming a range of values in a list, and the classic Towers of Hanoi example are presented.

Chapter 13: GUI Programming

This chapter discusses the basic aspects of designing a GUI application using the tkinter
module in Python. Fundamental widgets, such as labels, buttons, entry fields, radio buttons,
check buttons, list boxes, and dialog boxes, are covered. The student also learns how events
work in a GUI application and how to write callback functions to handle events. The Chapter
includes a discussion of the Canvas widget, and how to use it to draw lines, rectangles, ovals,
arcs, polygons, and text.

Chapter 14: Database Programming

This chapter introduces the student to database programming. The chapter first introduces the
basic concepts of databases, such as tables, rows, and primary keys. Then the student learns to
use SQLite to connect to a database in Python. SQL is introduced and the student learns to
execute queries and statements that search for rows, add new rows, update existing rows, and
delete rows. CRUD applications are demonstrated, and the chapter concludes with a discussion
of relational data.

Appendix A: Installing Python

This appendix explains how to download and install the latest Python distribution.

A01_GADD9032_05_SE_FM.indd 16 11/12/19 2:31 PM

 Preface xvii

Appendix B: Introduction to IDLE

This appendix gives an overview of the IDLE integrated development environment that comes
with Python.

Appendix C: The ASCII Character Set

As a reference, this appendix lists the ASCII character set.

Appendix D: Predefined Named Colors

This appendix lists the predefined color names that can be used with the turtle graphics
library, matplotlib and tkinter.

Appendix E: More About the import Statement

This appendix discusses various ways to use the import statement. For example, you can use
the import statement to import a module, a class, a function, or to assign an alias to a module.

Appendix F: Formatting Numeric Output with the format() Function

This appendix discusses the format() function and shows how to use its format specifiers to
control the way that numeric values are displayed.

Appendix G: Installing Modules with the pip Utility

This appendix discusses how to use the pip utility to install third-party modules from the
Python Package Index, or PyPI.

Appendix H: Answers to Checkpoints

This appendix gives the answers to the Checkpoint questions that appear throughout the text.

Organization of the Text
The text teaches programming in a step-by-step manner. Each chapter covers a major set of
topics and builds knowledge as students progress through the book. Although the chapters
can be easily taught in their existing sequence, you do have some flexibility in the order
that you wish to cover them. Figure P-1 shows chapter dependencies. Each box represents
a chapter or a group of chapters. An arrow points from a chapter to the chapter that must
be covered before it.

A01_GADD9032_05_SE_FM.indd 17 11/12/19 2:31 PM

xviii Preface

Features of the Text
 Concept Each major section of the text starts with a concept statement.

 Statements This statement concisely summarizes the main point of the section.

 Example Programs Each chapter has an abundant number of complete and partial
example programs, each designed to highlight the current topic.

 In the Spotlight Each chapter has one or more In the Spotlight case studies that
 Case Studies provide detailed, step-by-step analysis of problems and show

the student how to solve them.

 VideoNotes Online videos developed specifically for this book are avail-
able for viewing at www.pearsonhighered.com/cs-resources. Icons
appear throughout the text alerting the student to videos about
specific topics.

Chapters 1-5
(Cover in Order)

Chapter 7
Lists and Tuples

Chapter 6
Files and Exceptions

Chapter 12
Recursion

Chapter 11
Inheritance

Chapter 13
GUI Programming

Chapter 10
Classes and Object-

Oriented Programming

Chapter 8
More About Strings

Chapter 9
Dictionaries and Sets

Chapter 14
Database Programming

Chapter 14 includes
one example that uses

a GUI interface.

Figure P-1 Chapter dependencies

A01_GADD9032_05_SE_FM.indd 18 11/12/19 2:31 PM

 Preface xix

 Notes Notes appear at several places throughout the text. They are
short explanations of interesting or often misunderstood points
relevant to the topic at hand.

 Tips Tips advise the student on the best techniques for approaching
different programming problems.

 Warnings Warnings caution students about programming techniques or
practices that can lead to malfunctioning programs or lost data.

 Checkpoints Checkpoints are questions placed at intervals throughout
each chapter. They are designed to query the student’s
knowledge quickly after learning a new topic. Please note that
the Checkpoint exercises in this textbook may differ from the
Checkpoint questions embedded in the digital product Revel
Starting Out with Python.

 Review Questions Each chapter presents a thorough and diverse set of review
questions and exercises. They include Multiple Choice, True/
False, Algorithm Workbench, and Short Answer.

 Programming Each chapter offers a pool of programming exercises designed
 Exercises to solidify the student’s knowledge of the topics currently being

studied. Please note that the end-of-chapter Programming
Exercises in this textbook may differ from the end-of-chapter
Programming Exercises embedded in the digital product Revel
Starting Out with Python.

Supplements
Student Online Resources

Many student resources are available for this book from the publisher. The following items
are available at www.pearsonhighered.com/cs-resources

● The source code for each example program in the book
● Access to the book’s companion VideoNotes

Instructor Resources

The following supplements are available to qualified instructors only:
● Answers to all of the Review Questions
● Solutions for the exercises
● PowerPoint presentation slides for each chapter
● Test bank

Visit the Pearson Education Instructor Resource Center (www.pearsonhighered.com/irc) or contact
your local Pearson Education campus representative for information on how to access them.

Acknowledgments
I would like to thank the following faculty reviewers for their insight, expertise, and thought-
ful recommendations:

Paul Amer
University of Delaware

James Atlas
University of Delaware

James Carrier
Guilford Technical Community College

John Cavazos
University of Delaware

A01_GADD9032_05_SE_FM.indd 19 17/12/19 11:39 AM

xx Preface

I would like to thank the faculty, staff, and administration at Haywood Community College
for the opportunity to build a career teaching the subjects that I love. I would also like to
thank my family and friends for their support in all of my projects.

It is a great honor to be published by Pearson, and I am extremely fortunate to have Tracy
Johnson as my Editor and Content Manager. She and her colleagues Holly Stark, Erin Sullivan,
 Alicia Wilson, Scott Disanno, Carole Snyder, Bob Engelhardt, and Aishwarya Panday have
worked tirelessly to produce and promote this book. Thanks to you all!

About the Author
Tony Gaddis is the principal author of the Starting Out With series of textbooks. Tony has
nearly two decades of experience teaching computer science courses at Haywood Com-
munity College. He is a highly acclaimed instructor who was previously selected as the
North Carolina Community College “Teacher of the Year” and has received the Teaching
Excellence award from the National Institute for Staff and Organizational Development.
The Starting Out with series includes introductory books covering C++, Java™, Microsoft®
Visual Basic®, Microsoft® C#®, Python®, Programming Logic and Design, Alice, and App
Inventor, all published by Pearson. More information about all these books can be found at
www.pearsonhighered.com/gaddisbooks.

Desmond K. H. Chun
Chabot Community College

Sonya Dennis
Morehouse College

Barbara Goldner
North Seattle Community College

Paul Gruhn
Manchester Community College

Bob Husson
Craven Community College

Diane Innes
Sandhills Community College

Daniel Jinguji
North Seattle Community College

John Kinuthia
Nazareth College of Rochester

Frank Liu
Sam Houston State University

Gary Marrer
Glendale Community College

Keith Mehl
Chabot College

Shyamal Mitra
University of Texas at Austin

Vince Offenback
North Seattle Community College

Smiljana Petrovic
Iona College

Raymond Pettit
Abilene Christian University

Janet Renwick
University of Arkansas–Fort Smith

Haris Ribic
SUNY at Binghamton

Ken Robol
Beaufort Community College

Eric Shaffer
University of Illinois at Urbana-
Champaign

Tom Stokke
University of North Dakota

Anita Sutton
Germanna Community College

Ann Ford Tyson
Florida State University

Karen Ughetta
Virginia Western Community College

Christopher Urban
SUNY Institute of Technology

Nanette Veilleux
Simmons College

Brent Wilson
George Fox University

Linda F. Wilson
Texas Lutheran University

A01_GADD9032_05_SE_FM.indd 20 17/12/19 5:46 PM

A01_GADD9032_05_SE_FM.indd 21 11/12/19 2:31 PM

1

1.1 Introduction
Think about some of the different ways that people use computers. In school, students
use computers for tasks such as writing papers, searching for articles, sending email, and
participating in online classes. At work, people use computers to analyze data, make pre-
sentations, conduct business transactions, communicate with customers and coworkers,
control machines in manufacturing facilities, and do many other things. At home, people
use computers for tasks such as paying bills, shopping online, communicating with friends
and family, and playing games. And don’t forget that cell phones, tablets, smart phones,
car navigation systems, and many other devices are computers too. The uses of computers
are almost limitless in our everyday lives.

Computers can perform such a wide variety of tasks because they can be programmed. This
means that computers are not designed to do just one job, but to do any job that their pro-
grams tell them to do. A program is a set of instructions that a computer follows to perform
a task. For example, Figure 1-1 shows screens using Microsoft Word and PowerPoint, two
commonly used programs.

Programs are commonly referred to as software. Software is essential to a computer because
it controls everything the computer does. All of the software that we use to make our com-
puters useful is created by individuals working as programmers or software developers. A
programmer, or software developer, is a person with the training and skills necessary to
design, create, and test computer programs. Computer programming is an exciting and
rewarding career. Today, you will find programmers’ work used in business, medicine, gov-
ernment, law enforcement, agriculture, academics, entertainment, and many other fields.

This book introduces you to the fundamental concepts of computer programming using the
Python language. The Python language is a good choice for beginners because it is easy to learn

Introduction to Computers
and Programming1

TOPICS

 1.1 Introduction
 1.2 Hardware and Software
 1.3 How Computers Store Data

 1.4 How a Program Works
 1.5 Using Python

C
H

A
P

T
E

R

M01_GADD9032_05_SE_C01.indd 1 11/12/19 1:50 PM

2 Chapter 1 Introduction to Computers and Programming

and programs can be written quickly using it. Python is also a powerful language, popular with
professional software developers. In fact, it has been reported that Python is used by Google,
NASA, YouTube, various game companies, the New York Stock Exchange, and many others.

Before we begin exploring the concepts of programming, you need to understand a few
basic things about computers and how they work. This chapter will build a solid founda-
tion of knowledge that you will continually rely on as you study computer science. First,
we will discuss the physical components of which computers are commonly made. Next, we
will look at how computers store data and execute programs. Finally, you will get a quick
introduction to the software that you will use to write Python programs.

Figure 1-1 A word processing program and a presentation program

1.2 Hardware and Software

CONCEPT: The physical devices of which a computer is made are referred to as the
computer’s hardware. The programs that run on a computer are referred
to as software.

Hardware
The term hardware refers to all of the physical devices, or components, of which a computer
is made. A computer is not one single device, but a system of devices that all work toge-
ther. Like the different instruments in a symphony orchestra, each device in a computer
plays its own part.

If you have ever shopped for a computer, you’ve probably seen sales literature listing compo-
nents such as microprocessors, memory, disk drives, video displays, graphics cards, and so on.
Unless you already know a lot about computers, or at least have a friend that does, under-
standing what these different components do might be challenging. As shown in Figure 1-2, a
typical computer system consists of the following major components:

• The central processing unit (CPU)
• Main memory

M01_GADD9032_05_SE_C01.indd 2 11/12/19 1:50 PM

 1.2 Hardware and Software 3

• Secondary storage devices
• Input devices
• Output devices

Let’s take a closer look at each of these components.

The CPU
When a computer is performing the tasks that a program tells it to do, we say that the
computer is running or executing the program. The central processing unit, or CPU, is the
part of a computer that actually runs programs. The CPU is the most important component
in a computer because without it, the computer could not run software.

In the earliest computers, CPUs were huge devices made of electrical and mechanical com-
ponents such as vacuum tubes and switches. Figure 1-3 shows such a device. The two
women in the photo are working with the historic ENIAC computer. The ENIAC, which
is considered by many to be the world’s first programmable electronic computer, was built
in 1945 to calculate artillery ballistic tables for the U.S. Army. This machine, which was
primarily one big CPU, was 8 feet tall, 100 feet long, and weighed 30 tons.

Today, CPUs are small chips known as microprocessors. Figure 1-4 shows a photo of a lab
technician holding a modern microprocessor. In addition to being much smaller than the old
electromechanical CPUs in early computers, microprocessors are also much more powerful.

Input
Devices

Output
Devices

Secondary
Storage Devices

Central Processing
Unit

Main Memory
(RAM)

Iko/Shutterstock

A
q

ui
la

/
Sh

ut
te

rs
to

ck

Pe
te

r
G

ue
ss

/
Sh

ut
te

rs
to

ck

StockPhotosArt/Shutterstock

Jocic/Shutterstock

A
rt

 g
al

le
ry

/
Sh

ut
te

rs
to

ck

Elkostas/Shutterstock

Tkemot/Shutterstock

Andre Nitsievsky/Shutterstock.

Chiyacat/
ShutterstockFe

ng
 Y

u/
Sh

ut
te

rs
to

ck

N
ik

ita
 R

og
ul

/
Sh

ut
te

rs
to

ck

Kastianz/Shutterstock

Figure 1-2 Typical components of a computer system

M01_GADD9032_05_SE_C01.indd 3 11/12/19 1:50 PM

4 Chapter 1 Introduction to Computers and Programming

Figure 1-3 The ENIAC computer

courtesy of U.S. Army Historic Computer Images

Figure 1-4 A lab technician holds a modern microprocessor

Creativa Images/Shutterstock

M01_GADD9032_05_SE_C01.indd 4 11/12/19 1:50 PM

 1.2 Hardware and Software 5

Secondary Storage Devices
Secondary storage is a type of memory that can hold data for long periods of time, even
when there is no power to the computer. Programs are normally stored in secondary mem-
ory and loaded into main memory as needed. Important data, such as word processing
documents, payroll data, and inventory records, is saved to secondary storage as well.

The most common type of secondary storage device is the disk drive. A traditional disk
drive stores data by magnetically encoding it onto a spinning circular disk. Solid-state
drives, which store data in solid-state memory, are increasingly becoming popular. A solid-
state drive has no moving parts and operates faster than a traditional disk drive. Most
computers have some sort of secondary storage device, either a traditional disk drive or a
solid-state drive, mounted inside their case. External storage devices, which connect to one
of the computer’s communication ports, are also available. External storage devices can
be used to create backup copies of important data or to move data to another computer.

In addition to external storage devices, many types of devices have been created for copy-
ing data and for moving it to other computers. For example, USB drives are small devices
that plug into the computer’s USB (universal serial bus) port and appear to the system as
a disk drive. These drives do not actually contain a disk, however. They store data in a
special type of memory known as flash memory. USB drives, which are also known as
memory sticks and flash drives, are inexpensive, reliable, and small enough to be carried
in your pocket.

Main Memory
You can think of main memory as the computer’s work area. This is where the computer
stores a program while the program is running, as well as the data that the program is
working with. For example, suppose you are using a word processing program to write an
essay for one of your classes. While you do this, both the word processing program and the
essay are stored in main memory.

Main memory is commonly known as random-access memory, or RAM. It is called this
because the CPU is able to quickly access data stored at any random location in RAM.
RAM is usually a volatile type of memory that is used only for temporary storage while
a program is running. When the computer is turned off, the contents of RAM are erased.
Inside your computer, RAM is stored in chips, similar to the ones shown in Figure 1-5.

Figure 1-5 Memory chips

Garsya/Shutterstock

M01_GADD9032_05_SE_C01.indd 5 11/12/19 1:50 PM

6 Chapter 1 Introduction to Computers and Programming

Input Devices
Input is any data the computer collects from people and from other devices. The com-
ponent that collects the data and sends it to the computer is called an input device.
Common input devices are the keyboard, mouse, touchscreen, scanner, microphone,
and digital camera. Disk drives and optical drives can also be considered input devices,
because programs and data are retrieved from them and loaded into the computer’s
memory.

Output Devices
Output is any data the computer produces for people or for other devices. It might be
a sales report, a list of names, or a graphic image. The data is sent to an output device,
which formats and presents it. Common output devices are video displays and printers.
Disk drives can also be considered output devices because the system sends data to them
in order to be saved.

Software
If a computer is to function, software is not optional. Everything computer does, from the
time you turn the power switch on until you shut the system down, is under the control
of software. There are two general categories of software: system software and application
software. Most computer programs clearly fit into one of these two categories. Let’s take a
closer look at each.

System Software
The programs that control and manage the basic operations of a computer are generally
referred to as system software. System software typically includes the following types of
programs:

Operating Systems An operating system is the most fundamental set of programs on
a computer. The operating system controls the internal operations of the computer’s
hardware, manages all of the devices connected to the computer, allows data to be
saved to and retrieved from storage devices, and allows other programs to run on
the computer. Popular operating systems for laptop and desktop computers include
Windows, macOS, and Linux. Popular operating systems for mobile devices include
Android and iOS.

Utility Programs A utility program performs a specialized task that enhances the com-
puter’s operation or safeguards data. Examples of utility programs are virus scanners,
file compression programs, and data backup programs.

Software Development Tools Software development tools are the programs that pro-
grammers use to create, modify, and test software. Assemblers, compilers, and interpret-
ers are examples of programs that fall into this category.

M01_GADD9032_05_SE_C01.indd 6 11/12/19 1:50 PM

 1.3 How Computers Store Data 7

Application Software
Programs that make a computer useful for everyday tasks are known as application soft-
ware. These are the programs that people normally spend most of their time running on
their computers. Figure 1-1, at the beginning of this chapter, shows screens from two com-
monly used applications: Microsoft Word, a word processing program, and PowerPoint, a
presentation program. Some other examples of application software are spreadsheet pro-
grams, email programs, web browsers, and game programs.

Checkpoint
1.1 What is a program?

1.2 What is hardware?

1.3 List the five major components of a computer system.

1.4 What part of the computer actually runs programs?

1.5 What part of the computer serves as a work area to store a program and its data
while the program is running?

1.6 What part of the computer holds data for long periods of time, even when there is
no power to the computer?

1.7 What part of the computer collects data from people and from other devices?

1.8 What part of the computer formats and presents data for people or other
devices?

1.9 What fundamental set of programs control the internal operations of the
computer’s hardware?

1.10 What do you call a program that performs a specialized task, such as a virus
scanner, a file compression program, or a data backup program?

1.11 Word processing programs, spreadsheet programs, email programs, web browsers,
and game programs belong to what category of software?

1.3 How Computers Store Data

CONCEPT: All data that is stored in a computer is converted to sequences of 0s
and 1s.

A computer’s memory is divided into tiny storage locations known as bytes. One byte is
only enough memory to store a letter of the alphabet or a small number. In order to do
anything meaningful, a computer has to have lots of bytes. Most computers today have
millions, or even billions, of bytes of memory.

Each byte is divided into eight smaller storage locations known as bits. The term bit
stands for binary digit. Computer scientists usually think of bits as tiny switches that can
be either on or off. Bits aren’t actual “switches,” however, at least not in the conventional

M01_GADD9032_05_SE_C01.indd 7 11/12/19 1:50 PM

8 Chapter 1 Introduction to Computers and Programming

sense. In most computer systems, bits are tiny electrical components that can hold either a
positive or a negative charge. Computer scientists think of a positive charge as a switch in
the on position, and a negative charge as a switch in the off position. Figure 1-6 shows the
way that a computer scientist might think of a byte of memory: as a collection of switches
that are each flipped to either the on or off position.

OFF

ON

OFF OFFOFF

ON ON ON

Figure 1-6 Think of a byte as eight switches

When a piece of data is stored in a byte, the computer sets the eight bits to an on/
off pattern that represents the data. For example, the pattern on the left in Figure 1-7
shows how the number 77 would be stored in a byte, and the pattern on the right shows
how the letter A would be stored in a byte. We explain below how these patterns are
determined.

Storing Numbers
A bit can be used in a very limited way to represent numbers. Depending on whether the bit
is turned on or off, it can represent one of two different values. In computer systems, a bit
that is turned off represents the number 0, and a bit that is turned on represents the num-
ber 1. This corresponds perfectly to the binary numbering system. In the binary numbering
system (or binary, as it is usually called), all numeric values are written as sequences of 0s
and 1s. Here is an example of a number that is written in binary:

10011101

The number 77 stored in a byte. The letter A stored in a byte.

OFF

ON

OFF OFFOFF

ON ON ON

OFF

ON

OFF OFF OFF OFF OFF

ON

Figure 1-7 Bit patterns for the number 77 and the letter A

M01_GADD9032_05_SE_C01.indd 8 11/12/19 1:50 PM

 1.3 How Computers Store Data 9

The position of each digit in a binary number has a value assigned to it. Starting with
the rightmost digit and moving left, the position values are 20, 21, 22, 23, and so forth, as
shown in Figure 1-8. Figure 1-9 shows the same diagram with the position values calcu-
lated. Starting with the rightmost digit and moving left, the position values are 1, 2, 4, 8,
and so forth.

1 0 0 1 1 1 0 1
20

21

22

23

24

25

26

27

Figure 1-8 The values of binary digits as powers of 2

1 0 0 1 1 1 0 1
 1
 2
 4
 8
 16
 32
 64
128

Figure 1-9 The values of binary digits

To determine the value of a binary number, you simply add up the position values of all the
1s. For example, in the binary number 10011101, the position values of the 1s are 1, 4, 8,
16, and 128. This is shown in Figure 1-10. The sum of all of these position values is 157.
So, the value of the binary number 10011101 is 157.

1 0 0 1 1 1 0 1
1

4
8
16

128

1 + 4 + 8 + 16 + 128 = 157

Figure 1-10 Determining the value of 10011101

M01_GADD9032_05_SE_C01.indd 9 11/12/19 1:50 PM

10 Chapter 1 Introduction to Computers and Programming

Figure 1-11 shows how you can picture the number 157 stored in a byte of memory. Each
1 is represented by a bit in the on position, and each 0 is represented by a bit in the off
position.

128 + 16 + 8 + 4 + 1 = 157

128 64 32 16 8 4 2 1
Position
values

1

0

11 1 1

0 0

Figure 1-11 The bit pattern for 157

When all of the bits in a byte are set to 0 (turned off), then the value of the byte is 0. When
all of the bits in a byte are set to 1 (turned on), then the byte holds the largest value that
can be stored in it. The largest value that can be stored in a byte is 1 + 2 + 4 + 8 + 16 +
32 + 64 + 128 = 255. This limit exists because there are only eight bits in a byte.

What if you need to store a number larger than 255? The answer is simple: use more than
one byte. For example, suppose we put two bytes together. That gives us 16 bits. The posi-
tion values of those 16 bits would be 20, 21, 22, 23, and so forth, up through 215. As shown
in Figure 1-12, the maximum value that can be stored in two bytes is 65,535. If you need
to store a number larger than this, then more bytes are necessary.

32768 + 16384 + 8192 + 4096 + 2048 + 1024 + 512 + 256 + 128 + 64 + 32 + 16 + 8 + 4 + 2 + 1 = 65535

128 64 32 16 8 4 2 116384 8192 4096 2048 512 256102432768
Position
values

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Figure 1-12 Two bytes used for a large number

TIP: In case you’re feeling overwhelmed by all this, relax! You will not have to actu-
ally convert numbers to binary while programming. Knowing that this process is taking
place inside the computer will help you as you learn, and in the long term this knowl-
edge will make you a better programmer.

M01_GADD9032_05_SE_C01.indd 10 11/12/19 1:50 PM

 1.3 How Computers Store Data 11

Storing Characters
Any piece of data that is stored in a computer’s memory must be stored as a binary num-
ber. That includes characters, such as letters and punctuation marks. When a character is
stored in memory, it is first converted to a numeric code. The numeric code is then stored
in memory as a binary number.

Over the years, different coding schemes have been developed to represent characters in
computer memory. Historically, the most important of these coding schemes is ASCII,
which stands for the American Standard Code for Information Interchange. ASCII is a set
of 128 numeric codes that represent the English letters, various punctuation marks, and
other characters. For example, the ASCII code for the uppercase letter A is 65. When you
type an uppercase A on your computer keyboard, the number 65 is stored in memory (as
a binary number, of course). This is shown in Figure 1-13.

65A
00

1

0

1

0 0 0

Figure 1-13 The letter A is stored in memory as the number 65

TIP: The acronym ASCII is pronounced “askee.”

In case you are curious, the ASCII code for uppercase B is 66, for uppercase C is 67, and so
forth. Appendix C shows all of the ASCII codes and the characters they represent.

The ASCII character set was developed in the early 1960s and was eventually adopted by
almost all computer manufacturers. ASCII is limited, however, because it defines codes for
only 128 characters. To remedy this, the Unicode character set was developed in the early
1990s. Unicode is an extensive encoding scheme that is compatible with ASCII, but can
also represent characters for many of the languages in the world. Today, Unicode is quickly
becoming the standard character set used in the computer industry.

Advanced Number Storage
Earlier, you read about numbers and how they are stored in memory. While reading that
section, perhaps it occurred to you that the binary numbering system can be used to repre-
sent only integer numbers, beginning with 0. Negative numbers and real numbers (such as
3.14159) cannot be represented using the simple binary numbering technique we discussed.

Computers are able to store negative numbers and real numbers in memory, but to do so
they use encoding schemes along with the binary numbering system. Negative numbers are
encoded using a technique known as two’s complement, and real numbers are encoded in
floating-point notation. You don’t need to know how these encoding schemes work, only
that they are used to convert negative numbers and real numbers to binary format.

M01_GADD9032_05_SE_C01.indd 11 11/12/19 1:50 PM

12 Chapter 1 Introduction to Computers and Programming

Other Types of Data
Computers are often referred to as digital devices. The term digital can be used to describe
anything that uses binary numbers. Digital data is data that is stored in binary format, and
a digital device is any device that works with binary data. In this section, we have discussed
how numbers and characters are stored in binary, but computers also work with many
other types of digital data.

For example, consider the pictures that you take with your digital camera. These images
are composed of tiny dots of color known as pixels. (The term pixel stands for picture
element.) As shown in Figure 1-14, each pixel in an image is converted to a numeric code
that represents the pixel’s color. The numeric code is stored in memory as a binary number.

The music that you stream from an online source, or play on an MP3 player is also digital.
A digital song is broken into small pieces known as samples. Each sample is converted to
a binary number, which can be stored in memory. The more samples that a song is divided
into, the more it sounds like the original music when it is played back. For example, a
CD quality song is divided into more than 44,000 samples per second!

Checkpoint
1.12 What amount of memory is enough to store a letter of the alphabet or a small

number?

1.13 What do you call a tiny “switch” that can be set to either on or off?

1.14 In what numbering system are all numeric values written as sequences of 0s and 1s?

1.15 What is the purpose of ASCII?

1.16 What encoding scheme is extensive enough to represent the characters of many of
the languages in the world?

1.17 What do the terms “digital data” and “digital device” mean?

1.4 How a Program Works

CONCEPT: A computer’s CPU can only understand instructions that are written in
machine language. Because people find it very difficult to write entire
programs in machine language, other programming languages have been
invented.

10010101110100010101101

Figure 1-14 A digital image is stored in binary format

Jupiterimages/Getty Images

M01_GADD9032_05_SE_C01.indd 12 11/12/19 1:50 PM

 1.4 How a Program Works 13

Earlier, we stated that the CPU is the most important component in a computer because it is
the part of the computer that runs programs. Sometimes the CPU is called the “computer’s
brain” and is described as being “smart.” Although these are common metaphors, you
should understand that the CPU is not a brain, and it is not smart. The CPU is an electronic
device that is designed to do specific things. In particular, the CPU is designed to perform
operations such as the following:

• Reading a piece of data from main memory
• Adding two numbers
• Subtracting one number from another number
• Multiplying two numbers
• Dividing one number by another number
• Moving a piece of data from one memory location to another
• Determining whether one value is equal to another value

As you can see from this list, the CPU performs simple operations on pieces of data. The
CPU does nothing on its own, however. It has to be told what to do, and that’s the purpose
of a program. A program is nothing more than a list of instructions that cause the CPU to
perform operations.

Each instruction in a program is a command that tells the CPU to perform a specific opera-
tion. Here’s an example of an instruction that might appear in a program:

10110000

To you and me, this is only a series of 0s and 1s. To a CPU, however, this is an instruction
to perform an operation.1 It is written in 0s and 1s because CPUs only understand instruc-
tions that are written in machine language, and machine language instructions always have
an underlying binary structure.

A machine language instruction exists for each operation that a CPU is capable of perform-
ing. For example, there is an instruction for adding numbers, there is an instruction for
subtracting one number from another, and so forth. The entire set of instructions that a
CPU can execute is known as the CPU’s instruction set.

1 The example shown is an actual instruction for an Intel microprocessor. It tells the microprocessor
to move a value into the CPU.

NOTE: There are several microprocessor companies today that manufacture CPUs.
Some of the more well-known microprocessor companies are Intel, AMD, and Motorola.
If you look carefully at your computer, you might find a tag showing a logo for its
microprocessor.

Each brand of microprocessor has its own unique instruction set, which is typically
understood only by microprocessors of the same brand. For example, Intel micropro-
cessors understand the same instructions, but they do not understand instructions for
Motorola microprocessors.

M01_GADD9032_05_SE_C01.indd 13 11/12/19 1:50 PM

14 Chapter 1 Introduction to Computers and Programming

The machine language instruction that was previously shown is an example of only one
instruction. It takes a lot more than one instruction, however, for the computer to do any-
thing meaningful. Because the operations that a CPU knows how to perform are so basic in
nature, a meaningful task can be accomplished only if the CPU performs many operations.
For example, if you want your computer to calculate the amount of interest that you will
earn from your savings account this year, the CPU will have to perform a large number of
instructions, carried out in the proper sequence. It is not unusual for a program to contain
thousands or even millions of machine language instructions.

Programs are usually stored on a secondary storage device such as a disk drive. When you
install a program on your computer, the program is typically downloaded from a website,
or installed from an online app store.

Although a program can be stored on a secondary storage device such as a disk drive,
it has to be copied into main memory, or RAM, each time the CPU executes it. For
example, suppose you have a word processing program on your computer’s disk. To
execute the program, you use the mouse to double-click the program’s icon. This causes
the program to be copied from the disk into main memory. Then, the computer’s CPU
executes the copy of the program that is in main memory. This process is illustrated in
Figure 1-15.

Main memory
(RAM)

Disk drive CPU

The program is copied
from secondary storage

to main memory.

The CPU executes
the program in
main memory.

Figure 1-15 A program is copied into main memory and then executed

When a CPU executes the instructions in a program, it is engaged in a process that is known
as the fetch-decode-execute cycle. This cycle, which consists of three steps, is repeated for
each instruction in the program. The steps are:

 1. Fetch. A program is a long sequence of machine language instructions. The first step
of the cycle is to fetch, or read, the next instruction from memory into the CPU.

 2. Decode. A machine language instruction is a binary number that represents a com-
mand that tells the CPU to perform an operation. In this step, the CPU decodes
the instruction that was just fetched from memory, to determine which operation it
should perform.

 3. Execute. The last step in the cycle is to execute, or perform, the operation.

Figure 1-16 illustrates these steps.

M01_GADD9032_05_SE_C01.indd 14 11/12/19 1:50 PM

